
P a g e | 1

Types of Arguments

 Positional / Required Arguments: The arguments which are required by the callee

function to perform the given task are known as positional or required arguments.

 They must be in the same order and same number as in the callee function while

calling the callee function.

For example

Consider the following function

def interest(p , t , r):

 si = (p * r * t) / 100

 return si

Now this function can be called in the following ways.

ans =interest (10000, 5, 6) valid

ans =interest (pr , time , rate) valid

ans =interest (10000 , 5 , 4.5) valid

ans =interest (pr , rate , time) invalid

ans =interest (pr , , 7.3) invalid

 Default Arguments: The formal arguments are those which have their own predefined

value which can be used when required value for those arguments is not passed or supplied

while calling the function.

 It means that the default arguments become optional in the function calling.

 If the value for default argument is passed during function call then this value

override the predefined value of that default argument.

 One very important thing to be noted is that all the default arguments must be

on the rightmost side of the non-default arguments in the function definition.

For example

Now consider the following function

def interest(p , t =2 , r = 0.10):

 si = (p * r * t) / 100

 return si

Now this function can be called in the following ways.

ans =interest (10000) valid

P a g e | 2

ans =interest (10000 , 5) valid

ans =interest (10000 , 5 , 7.3) valid

ans =interest (pr , time , 7.3) valid

ans =interest (pr , , 7.3) invalid

 Keyword / Named arguments: These arguments are used during the function calling in

those cases where we do not want to maintain the sequence of arguments / parameters.

 It means, using named arguments we can reorder the arguments being passed to the

callee function.

 But we must have to write the name of the argument to which the value is to be

passed.

For example

Consider the following function

def interest(p , t =2 , r = 0.10):

 si = (p * r * t) / 100

 return si

Now this function can be called in the following ways.

ans =interest (p=10000 , t=5 , r=7.3)

ans =interest (t=5 , p=10000 , r=7.3)

ans =interest (p=10000 , r=7.3 , t=5)

ans =interest (t=5 , p=10000)

ans =interest (r=5 , p=10000)

ans =interest (p=10000)

and so on , All are Valid

P a g e | 3

Returning Multiple Values from Function

In Python we can return multiple values in the following ways:

 Returning values in the form of tuple variable.

Example

def squared(x,y,z):

 return x*x , y*y , z*z

t = squared (2,3,4) Here t is a tuple

print(t)

 Directly unpacking received values of tuple by using no. of variables on left hand

side of function calling.

Example

def squared(x,y,z):

 return x*x , y*y , z*z

v1 , v2 , v3 = squared (2,3,4)

print(v1, v2, v3)

P a g e | 4

Scope and Lifetime of Variable

The parts of program in which a variable can be used or accessed is called as the scope of

the variable and the time period for which variable lives in memory is called its lifetime.

The scope of variable is of following two types:

 Global Scope

 Variables declared in top level segment or in (__main__) section of the

program.

 Variables declared outside body of all the function i.e. in the beginning

These variables can be accessed inside the whole program i.e. in any block

(if, for, while etc.) or in any function body.

 Local Scope

 Variables declared inside the body of a particular function.

These variables can be accessed only inside the function body in which it is

declared.

For Example: a=10

def f1(x,y):

print(a) Global variable valid

print(x) local to f1() valid

 print(y) local to f1() valid

 print(p) local to f2() invalid error

 print(n) global variable declared in _main_ valid

def f2(p,q):

print(a) Global variable valid

print(p) local to f2() valid

 print(q) local to f2() valid

 print(x) local to f1() invalid error

 print(n) global variable declared in _main_ valid

body of _main_ or Top level segment

n=20

print(a) Global variable valid

print(p) local to f2() invalid error

 print(x) local to f1() invalid error

 print(n) global variable declared in _main_ valid

